
Introduction of numerical

prediction methods

for non-isothermal flows

Satoru Ushijima

Kyoto University, Japan

ushijima@media.kyoto-u.ac.jp

13th August 2014

(C) Satoru Ushijima



Where am I from ?

(a) Japan to New Zealand (b) Kyoto Univ. in Japan

8,800 km with 10-hour flight
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Kyoto university

(a) Yoshida campus (b) Katsura campus

• My Lab. is in ACCMS of Yoshida Main campus.
ACCMS = Academic Center for Computing and Media Studies,
where we deal with Supercomputers etc.

• The students in my Lab. (officially) belong to Civil and Earth
Resources Eng. in Graduate School of Eng. in Katsura campus,
located 15 km from Yoshida campus (actually stay in Yoshida).
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Supercomputers in Kyoto Univ.

(a) SystemA(32Cores×940Nodes) (b) SystemE(10+60Cores×482Nodes)

• ACCMS operates the Supercomputer in Kyoto Univ.
• Various types of Supercomputers (system A, B(G), C, D and E)
• Theoretical speed : 1.566 PFlops = (1.566 ×1015 Flops)

≈ 300.8 + 242.5 + 10.6 + 428.6 + 583.6 (TF)
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Some views near Yoshida campus

(a) Ginkaku-ji temple

= “Silver Pavilion” in English,

created in 1,490

(world heritage)

(b) Kamo river

Famous river in Kyoto city.

The riverbanks are popular

walks for residents and tourists.
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Non-isothermal (or Density) flows

• Non-isothermal or density flows can be found near

river mouths (salt wedge), thermal stratification in

lakes and many other engineering fields.

(a) Salt wedge
(http://www.saltwedge.org/) (b) Thermal stratification in lakes

(http://www.lakeaccess.org)
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Lock-exchange problem

• ρ1 > ρ2 ⇒ light and heavy currents arise
• Three numerical models are compared focusing on both front

behaviors and conservation of mass in whole area.
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Outline of today’s topics

• Governing equations for density flows

• Boussinesq approximations for density flows

• Three models will be compared :

model-A = Incompressible fluid model using

all Boussinesq approximations

model-B = Incompressible fluid model using

partial Boussinesq approximations

(not used BA for momentum eqs.)

model-C = Compressible fluid model

(using no approximations)
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Classical laws for fluids and governing eqs.

• Mass conservation law

• Newton’s second law of motion

• First law of thermodynamics

• Relation between state variables (e.g. p ↔ ρ, e)

⇓
• Mass conservation equation (1 eq. : ρ, u)

• Momentum equations (3 eqs. in 3D space : ρ, u, p)

• Energy equation (1 eq. : e, ρ, u, p)

• Equation of state (1 eq. : p, ρ, e)
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Fluid variables in Control Volume (CV)

• Descriptions of fluid variables : L and E

Eulerian description : ρ(t, x)

(independent variables = t and x fixed in space)

inflow

outflow

control volume 

fixed in space
x

x

x

1

2

3

• Consider conservation laws in the Control Volume

(CV) that is fixed in space and its surface always

keeps same shape.
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Mass conservation in CV

• Increase rate of mass in CV = Incoming mass into CV

n

u

ds

inflow

outflow

control volume 

fixed in space
x

x

x

1

2

3

∂

∂t

∫
V

ρ dv = −
∫

S

ρuini ds (integral form)

• where n is outward normal unit vector on CV surface
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Mass conservation in CV (cont.)

• Gauss’ divergence theorem :∫
V

∇A dv =

∫
S

A · n ds

or when A = (a1, a2, a3), it is same as∫
V

∂ai

∂xi

dv =

∫
S

aini ds

Thus, the integral form of mass conservation becomes

∂ρ

∂t
+

∂(ρui)

∂xi

= 0 (1)
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Governing eqs. for compressible fluid

• Similarly, we derive the other eqs.

• Momentum eqs. for Newtonian fluid :

ρ
∂ui

∂t
+ ρ

∂(uiuj)

∂xj

= ρgi −
∂p

∂xi

+ µ
∂2ui

∂x2
j

(2)

• Eq. for temperature (αT = thermal diffusivity) :

∂T

∂t
+

∂(Tuj)

∂xj

=
Q

cvρ
+ αT

∂2T

∂x2
j

(3)

• Eq. of state (ideal gas) : p = cv(γ−1)ρT (4)

where γ = cp/cv, cp and cv are specific heats at

constant pressure and volume, respectively.
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Model-C

• With eqs. (1) to (4), we can predict compressible

(and incompressible) fluids with no approximations.

• Model-C : consists of all eqs. (1) to (4)
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Boussinesq approximations

• Simple relationship between ρ and T :

ρ =
ρ0

1 + β(T − T0)
(ρ0 = const. at T = T0)

where β = coefficient of thermal expansion.

• When β(T − T0) � 1, we have

ρ =
ρ0

1 + β(T − T0)
≈ ρ0[1 − β(T − T0)] ≡ ρ0 + ∆ρ

• Boussinesq approximations (BA) :

(a) neglect ∆ρ in mass conservation eq.

(b) neglect ∆ρ only on LHS of momentum eqs.
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Mass conservation eq. with BA (a)

• Original mass conservation eq.

∂ρ

∂t
+

∂(ρui)

∂xi

= 0

• With BA (a), mass conservation becomes

∂(ρ0 + �
�>∆ρ)

∂t
+

∂[(ρ0 + �
�>∆ρ)ui]

∂xi

= 0 → ∂ui

∂xi

= ∇u = 0

• ∇u = 0 means the incompressible condition,

as a result, the fluid becomes “incompressible”.
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Model-B

• Model-B uses only BA (a).

• incompressible fluid : ∇u = 0

• Momentum eqs. :

ρ
∂ui

∂t
+ ρ

∂(uiuj)

∂xj

= ρgi −
∂p

∂xi

+ µ
∂2ui

∂x2
j

• Eq. for temperature :

∂T

∂t
+

∂(Tuj)

∂xj

=
Q

cvρ
+ αT

∂2T

∂x2
j

• Relationship for ρ and T : ρ = ρ0/[1 + β(T − T0)]

(C) Satoru Ushijima



Momentum eqs. with BA (b)

• With BA (b) in addition to BA (a),

momentum eqs. become

ρ
∂ui

∂t
+ ρ

∂(uiuj)

∂xj

= ρgi −
∂p

∂xi

+ µ
∂2ui

∂x2
j

⇓

(ρ0 + �
�>∆ρ)

∂ui

∂t
+ (ρ0 + �

�>∆ρ)
∂(uiuj)

∂xj

= ρgi −
∂p

∂xi

+ µ
∂2ui

∂x2
j

⇓ × 1/ρ0

∂ui

∂t
+

∂(uiuj)

∂xj

=
ρ

ρ0

gi −
1

ρ0

∂p

∂xi

+ ν
∂2ui

∂x2
j
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Model-A

• Model-A uses BA (a) and (b).

• incompressible fluid : ∇u = 0

• Momentum eqs. :

∂ui

∂t
+

∂(uiuj)

∂xj

=
ρ

ρ0

gi −
1

ρ0

∂p

∂xi

+ ν
∂2ui

∂x2
j

• Eq. for temperature :

∂T

∂t
+

∂(Tuj)

∂xj

=
Q

cvρ
+ αT

∂2T

∂x2
j

• Relationship for ρ and T : ρ = ρ0/[1 + β(T − T0)]
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Summary of three Models

• Three numerical models are summarized as

model BA (a) BA (b) fluid

model-A Yes Yes Incompressible

model-B Yes No Incompressible

model-C No No Compressible

• Next, we will compare three models

using experimental results of lock-exchange problems.
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Experiments (R.J.Lowe, et al., 2005)

• H = 0.2 m, L = 1.82 m

• Density ratio : r = ρ2/ρ1 < 1 (since ρ2 < ρ1)

• Targets : r = 0.993 and r = 0.681

• non-dim. time : t∗ ≡ t
√

g(1 − r)/H
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Conditions of computations

• Finite Volume Method and accurate schemes

originally developed in our Lab.

• Non-slip and adiabatic conditions for all boundaries

• 256 parallel computations using system-A

in Kyoto University supercomputer with flat MPI
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Front shapes (r = 0.993)

(a) exp. (R.J.Lowe, et al., 2005) (b) model-A

• Predicted results by model-A are shown on the right side.
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Front shapes (r = 0.993)

(a) exp. (R.J.Lowe, et al., 2005) (b) model-B

• Predicted results by model-B are shown on the right side.
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Front shapes (r = 0.993)

(a) exp. (R.J.Lowe, et al., 2005) (b) model-C

• Predicted results by model-C are shown on the right side.
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Front shapes (r = 0.681)

(a) exp. (R.J.Lowe, et al., 2005) (b) model-A

• Predicted results by model-A are shown on the right side.
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Front shapes (r = 0.681)

(a) exp. (R.J.Lowe, et al., 2005) (b) model-B

• Predicted results by model-B are shown on the right side.
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Front shapes (r = 0.681)

(a) exp. (R.J.Lowe, et al., 2005) (b) model-C

• Predicted results by model-C are shown on the right side.
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Front positions (R.J.Lowe, et al., 2005)

(a) r = 0.993 (b) r = 0.681

• r = 0.993 : Heavy (●) and light fronts (○) are almost same
• r = 0.681 : Heavy front (●) moves faster than light front (○)
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Predicted Front positions : model-A

(a) r = 0.993 (b) r = 0.681

• model-A cannot predict the differences
between light and heavy front positions in (b) r = 0.681.
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Predicted Front positions : model-B

(a) r = 0.993 (b) r = 0.681

• model-B can predict the differences qualitatively
between light and heavy front positions in (b) r = 0.681.
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Predicted Front positions : model-C

(a) r = 0.993 (b) r = 0.681

• model-C can also predict the differences qualitatively
between light and heavy front positions in (b) r = 0.681.
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Mass conservation (calculations)

• Me is non-dim. error of mass conservation. Me = |M − M0|/M0,
where M and M0 are mass of whole area at t = t and 0.

• Me should be 0 and model-C gives the best results.
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Computational time

• Computational time in case of r = 0.681

• 256 parallel computations with flat MPI

model ∆t grid num. CPU time per 1 sec.

model-A 1.0 ×10−3 2,725,888 7.77 min.

model-B 1.0 ×10−3 2,725,888 7.88 min.

model-C 5.0 ×10−6 340,736 1.53 hours

• model-C needs large CPU time, although number of

computational grid points is small.
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Concluding remarks

1) When density ratio ≈ 1, front positions are reasonably

predicted by ALL models.

2) However, when density ratio is small (≤ 0.7),

model-A cannot predict front positions accurately,

while model-B and model-C can do it.

3) Regarding mass conservation, model-A and model-B

have slight errors, while model-C is perfect.

4) model-C needs large computational time.

5) Conclusively, model-B may be practically useful.
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