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Abstract. A computational method is proposed for interactions between deformable objects
and fluid flows using the immersed boundary method and the mass spring model. In the
proposed method, the direct-forcing immersed boundary (DF/IB) method by Uhlmann is
used for the computation of fluid-solid interaction. Multiple mass points are set up on the
surface of a solid object and connected to each other with spring-dashpot model. The dis-
tinct element method (DEM) is used for the calculation of solid-solid and solid-wall contact
forces. The proposed method is applied to lid-driven cavity flow problems with multiple
deformable solid objects. The results demonstrated that the proposed method enables us to
calculate the deformations of the multiple deformable solid objects due to the fluid-solid and
solid-solid interactions.
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1. Introduction

A mass spring model, firstly reported by Terzopoulos [1], is often used to simulate de-
formable objects due to its simplicity and low computational cost. In recent years, various
applications of the mass spring model were studied such as for cloth simulations [2] and
soft tissues [3]. In this study, we describe a method for the computation of interactions
between deformable objects and fluid flows using the direct-forcing immersed boundary
method (DF/IB) [4] and mass spring model. We applied the proposed method to lid-driven
cavity flow problems where multiple deformable objects are with different spring constant
values and its applicability is discussed. From the initial position, the objects are washed
away by the velocity on the top wall, colliding with each other and with the surrounding
walls while their shapes are also being affected by the fluid velocity.
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2. Numerical method

For the computation of the fluid-solid interactions, DF/IB method by Uhlmann [4] is used.
The governing equations for incompressible fluids are first solved to obtain the tentative
fluid velocities assuming that fictitious fluid exists inside the solid which is considered as
deformable body in this study. Governing equations for incompressible fluids are given by
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where t is time, xi is the component of Cartesian coordinate system, ρ f is density, ν is
kinematic viscosity, and p is pressure. In addition, ui is the velocity component and fi is
the external force in xi direction. The governing equations are solved with a finite volume
method on the collocated grid system [5]. Numerical procedures of fluid computations are
based on the SMAC method.

In DF/IB calculation, in order to calculate the fluid force acting on a solid body, veloci-
ties on the center points of fluid cells are interpolated into Lagrangian points shown in Fig.
1 (left) using discrete delta functions. On each Lagrangian point, the i-th component of fluid
force F f ,i acting on solid object is calculated using the subtraction of solid and interpolated
fluid velocity. Calculated F f ,i is then spread to the surrounding fluid cells. The calculation
for the next time step fluid velocity is given by

un+1
i = u∗i + ∆tλn

i , (3)

where λi is the fluid force component in xi direction on the center point of each fluid cell. λi

is calculated by the spreading of F f ,i, and ∆t is the time step increment. In addition, n and ∗
represent the time step and the tentative value obtained in the fluid computation.

The solid objects with circular shapes in the initial condition are calculated in the 2D
field. Multiple mass points are arranged on the surface and a central point of the object
as shown in Fig. 1 (center), where the points on the surface correspond to the Lagrangian

Figure 1: Schematic of fluid cells and Lagrangian points for DF/IB (left), mass
spring model (center), and contact detection spheres (right)
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points used in DF/IB. Spring and dashpot models represented by the lines in Fig. 1 (center)
are assumed to exist between mass points. Contact detection spheres are arranged on the
solid object surface as shown in Fig. 1 (right) and the distinct element method (DEM) is
used for the calculation of solid-solid and solid-wall contact forces [5]. The momentum
equation of each mass point is given by

MU̇ = Fs + F f + Fc + Fe, (4)

where U is the vector of the mass point velocity, and the dot sign represents the time deriva-
tion. M is the mass of each point given by M = ρsVs/N, where ρs is the solid density,
Vs is the total volume of the solid object, and N is the number of mass points (Lagrangian
points). Fs is the vector of the force calculated by the spring-dashpot model, F f is the vec-
tor of the fluid forces calculated with DF/IB, Fc is the vector of the contact force calculated
with contact detection spheres and DEM, and Fe is the vector of the external forces.

3. Applications

In the application, multiple deformable solid objects with the diameter d = 0.2 are arranged
inside the 2D computational area filled with the fluid as shown in Figs. 2 and 3 when t =
0.0. The computational area is a square with the length L = 1.0.

Figure 2: Cavity flow with deformable objects (velocity vectors and object out-
lines) with k = 100

Figure 3: Cavity flow with deformable objects (velocity vectors and object out-
lines) with k = 10
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Here, the present mechanical model between mass points is assumed to have spring and
dashpot constants, k and c, as 10 and 100 in case 1, and as 100 and 100 in case 2. The spring
constants used for DEM in cases 1 and 2 are 100 times larger than k in each case, and the
radius of the contact detection spheres is 0.04. In both cases, the solid density ρs is 1500 and
the number of mass points (Lagrangian points) N is 21. The gravity acceleration is assumed
to be zero in both cases. For the fluid, velocities utop,1 = 0.1 and utop,2 = 0 are applied on the
top wall. We use kinematic viscosity ν = 0.01, fluid density ρ f = 1000, and the Reynolds
number Re = utop,1L/ν = 10.

The number of fluid cells is 100 × 100. Figures 2 and 3 show the calculated velocity
vectors and the objects at different time steps. The solid objects are transported reasonably
by the circulating flow. Due to the fluid-solid and solid-solid interactions, the objects cannot
conserve their initial shapes and continue to deform as can be seen especially closer to the
moving top wall. Comparing the two cases, larger deformations can be obviously observed
in the case 2 where the value of k is smaller.

4. Conclusions

We proposed a computational method for interactions between deformable objects and fluid
flows using DF/IB and the mass spring model. The proposed method is then applied to lid-
driven cavity problems with multiple deformable objects. It is confirmed that the proposed
computational method enables us to calculate the deformations of the objects due to fluid-
solid and solid-solid interactions with different spring constant values.
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