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Abstract. The damping effects on the free-surface motions due to the presence of the de-
formable solid bodies suspended in the fluid were numerically investigated. The computa-
tional method is based on the Eulerian method that can deal with the interactions between
the Newtonian fluids and visco-hyperelastic solid bodies. In the numerical experiments, the
free-surface motions caused by the so-called dam-break conditions, including four spherical
visco-hyperelastic bodies, were calculated with two cases of non-dimensional shear moduli,
G = 0.1 and 10.0, of the visco-hyperelastic bodies, which have the same density as that of
the fluid. As a result of the computations, the following reasonable results were obtained:
when the solid bodies are sufficiently flexible (G = 0.1), the free-surface motions are almost
same as those having no solid bodies. In contrast, it was demonstrated that the damping
effects are obviously large in case that the solid bodies are relatively rigid (G = 10.0).
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1. Introduction

It is known that the free-surface motions are affected by the solid objects suspended in the
fluid. In case that the solid objects are made of deformable material and their density is same
as that of the fluid, it is expected that the effects on the free-surface motions increase as the
stiffness of the material increases.

The purpose of this study is to demonstrate such tendency can be numerically pre-
dicted with a suitable computational method. We adopt partial differential equations for
left Cauchy-Green deformation tensor of hyperelastic solid objects [1], [2]. Taking account
of the viscosity, the partial differential equations are solved with Navier-Stokes equations to
deal with the interactions between Newtonian fluids and visco-hyperelastic solid objects. In
this method, all governing equations are discretized with a finite volume method (FVM) on
the collocated Eulerian grid system fixed in the space.

In this study, the dam-break flows including spherical visco-hyperelastic bodies were
calculated to investigate the damping effects of the stiffness in the suspended objects on
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free-surface motions. Thus, two cases of computations were conducted with G = 0.1 and
10.0. As a result of the computations, the following reasonable results were obtained: it was
confirmed that the free-surface motions are almost same as those having no solid bodies
when the visco-hyperelastic bodies are sufficiently flexible (G = 0.1), while the damping
effects are obviously large in case that the solid bodies are relatively rigid (G = 10.0).

2. Numerical methods

The phase-averaged governing equations are derived for the multiphase fields consisting
of incompressible Newtonian gas and liquid phases in addition to the visco-hyperelastic
phases. The governing equations are given by the following incompressible condition, mass
conservation equation and momentum equations respectively:
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where t is time, xi is the component of Cartesian coordinate system, ρ is density, p is pres-
sure, µ is the coefficient of viscosity and G is shear modulus. In addition, ui is the velocity
component and fi is the external force in xi direction. Di j is the component of the deforma-
tion rate tensor and ϕs is solid volume fraction in a computational cell. B∗′i j is the deviation
tensor of B∗i j which is defined by ϕ1/2

s Bi j, where Bi j is the left Cauchy-Green deformation
tensor. The equations of ϕs and B∗i j are given as follows:
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where Di j，B∗′i j and Li j are given as follows:
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The governing equations are discretized with FVM on the collocated grid system and they
are solved with the modified MAC method [3].

3. Results and discussion

As shown in Figs. 1 (a) and 2 (a), showing the same initial conditions of two cases of
computations, the present method was applied to dam-break flows including four spherical
visco-hyperelastic objects. All variables in computations are non-dimensionalized with rep-
resentative values. The lengths of the computational volume are 2.1, 1.0 and 1.0 in x1, x2
and x3 directions, which correspond to streamwise, transverse and vertical directions, re-
spectively. The gravitational acceleration is -10.0 in x3 direction. The initial water depths of
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the dam-break condition are 0.8 (x1 ≤ 0.25) and 0.5 (x1 > 0.25). The radius of the spherical
objects is 0.2 and the interval of the center points of the neighboring two objects is 0.5. The
center point of the spherical object on the most left side is located at (x1, x2, x3) = (0.3, 0.5,
0.3).

(a) t = 0

(b) t = 0.5

(c) t = 1.5

(d) t = 2.0

Figure 1: Free surfaces and deformable
objects (G = 10.0)

(a) t = 0

(b) t = 0.5

(c) t = 1.5

(d) t = 2.0

Figure 2: Free surfaces and deformable
objects (G = 0.1)

On all boundaries, the pressure boundary conditions ∂p/∂n = 0 are applied, while non-
slip conditions are used for velocity except on the top wall where free-slip condition is
adopted. The kinematic viscosity of gas and liquid is set at 1.0 × 10−2, while the densities
of the gas and liquid are 1.0 and 1.0× 103 respectively. The viscous coefficient of the visco-
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hyperelastic body is 1.0 × 10−2, while two cases of computations were conducted with the
shear moduli G = 10.0 and G = 0.1 to confirm the damping effects of different G on the
free-surface motions. The density of visco-hyperelastic bodies is 1.0× 103 which is same as
that of the liquid phase. Thus, four visco-hyperelastic bodies are suspended in the liquid.

Figure 1 shows the free-surface profiles and the shapes of the four visco-hyperelastic
bodies with G = 10.0, while Fig. 2 shows the results with G = 0.1. Comparing two results,
it can be seen that the visco-hyperelastic bodies are largely deformed due to the interactions
with the free-surface flows in case that G = 0.1.

The time histories of the liquid levels hL on the left wall (on the x1 = 0 section) are
shown in Fig. 3. Comparing with the hL obtained with no solid bodies, the amplitudes of
the liquid levels hL are largely decreased when G = 10.0 as shown in Fig. 3 (a), while the
damping effects are scarcely found in case of G = 0.1 as indicated in Fig. 3 (b). It can be
thought reasonable the effects on the free-surface motions increase as the stiffness of the
deformable bodies increases. Conclusively, it can be said that such tendency is successfully
demonstrated with the present computational method.

(a) G = 10.0 (b) G = 0.1

Figure 3: Comparisons of time histories of hL with and without objects
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