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Abstract.
To investigate the influences of swelling objects on free-surface flows, computations

of dam-break flows in porous media composed of swelling objects were conducted in this
study. Before the investigation of the swelling objects, the numerical method was applied to
lock-exchange flows in porous media composed of non-swelling objects to check its appli-
cability. As a result, the calculated front positions were in good agreement with the results
reported by Ozan et al. After that, computations were conducted on dam-break flows in
porous media composed of swelling objects considering different swelling rates. To clarify
the difference in their flow patterns, the water surface heights were compared. The results
showed that the dam-break flow was stopped by swelled objects and the water was trapped
when the swelling rate is large.
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1. Introduction
Behaviors of swelling objects (e.g., superabsorbent polymers) in the fluid were experimen-
tally and numerically investigated in previous studies [1]. On the other hand, it is also
important to investigate the influences of swelling objects on flow patterns. For example,
the changes of flow paths caused by swelling of objects are non-negligible to evaluate the
water-absorbing performance of porous media composed of superabsorbent polymers, since
the water flow can be stopped and trapped by the swelled objects when their swelling rate is
large.

To investigate the influence of swelling objects, computations of dam-break flows in
porous media composed of swelling objects are conducted considering the difference of
swelling rates. Through the numerical experiments, the relationship between the swelling
rates and the flow patterns are discussed.

2. Numerical method
The governing equations for isothermal incompressible gas and liquid based on the phase-
averaged model are given by the following incompressible condition, conservation equation
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of mass and momentum equations:
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where t is the time, xi (i = 1, 2) is the component of the Cartesian coordinate system in
which x2 is the vertical component, ui is the mass-averaged velocity component, g is the
gravitational acceleration and δi j is Kronecker delta. The pressure p, the fluid density ρ
and the coefficient of viscosity µ are volume-averaged variables. Equations (1), (2) and (3)
are discretized by the finite volume method on the collocated grid system with the SMAC
method [2]. For the convection terms, the 3rd-order TVD method is applied [3]. In addition,
C-HSMAC method [2] is applied for the calculation of pressure to satisfy the incompressible
condition.

The computational cell is treated as a solid cell when its cell center is included in the
object region. In the solid cell, velocities at the cell center are defined as: ui = 0. On the
boundaries of the solid cell which face to fluid cells, non-slip conditions are imposed.

3. Results and discussions
3.1. Lock-exchange flow in porous media composed of non-swelling objects
Computations are conducted on lock-exchange flows in porous media composed of non-
swelling square objects to check the applicability of the numerical method. The time history
of front positions is compared with the results reported by Ozan et al. [4]. The height of
the calculation area is H and the width is 12H as shown in Fig. 1, where H is 1.0. Non-slip
conditions are imposed on all boundaries of the calculation area. The left half of the area is
filled with the dense fluid whose density is ρw and coefficient of viscosity is µw. The right
half is filled with the less dense fluid whose density is ρa and coefficient of viscosity is µa.
In this numerical experiment, ρw, ρa, µw, µa are 1001, 1000, 0.6667, 0.6673, respectively. In
addition, the gravitational acceleration g is 10.0. Nondimensional variables are used for the
numerical experiments of lock-exchange flows.

The square objects in the calculation area are arranged in a regular staggered pattern
whose spacing length s is defined as shown in Fig. 1. The volume fraction of solids ϕs

in the calculation area is given by ϕs = 2D2/s2 where D is the side length of the square
object and D is 1.0. Three different values of ϕs are considered in the computations, namely
ϕs = 0.0125, 0.050, 0.120 corresponding to s = 0.4048, 0.2024, 0.1306, respectively. The
number of computational cells is 2400 × 200.

Figure 2 shows the time history of front position x f of the dense fluid normalized by H.
The interface of the fluids is defined as ϕρ = 0.01, where ϕρ is normalized density given by
ϕρ = (ρ − ρa)/(ρw − ρa). The reference time t0 is given by t0 =

√
Hρw/g(ρw − ρa). From

Fig. 2, the results in this study are in good agreement with the results reported by Ozan et
al. [4].
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Figure 1: Calculation area containing objects Figure 2: Time history of front positions
(with results by Ozan et al. [4])

3.2. Dam-break flow in porous media composed of swelling objects
Four cases of dam-break flows are considered to investigate the influence of swelling objects
on free-surface flows. In Case 1, no object is set in the calculation area which is the same
condition as experiments by Koshizuka et al. [5]. As a result, the time history of front
positions is in good agreement with the experimental results by Koshizuka et al. [5].

In Case 2, the calculation area contains non-swelling circular objects. While, in Cases 3
and 4, the calculation area contains swelling circular objects whose swelling rates vr are v0
and 4v0, respectively, where v0 is 1.46×10−2 [m/s]. The radius r of objects becomes larger in
time with the swelling rate which means r = r0+vrt, where r0 = 1.46×10−2 [m] is the radius
at the initial state (t = 0 [s]). In the computations, the swelling is independent of the flows
and continues until objects touch each other and the bottom boundary. The length of the
width and height of the calculation area is L as shown in Fig. 3, where L is 0.584 [m]. Non-
slip conditions are imposed on all boundaries of the calculation area. The width of the water
column is L/4 and the height of that is L/2 in the initial state. The density and the coefficient
of viscosity ρw, ρa, µw, µa are 0.9966 × 103 [kg/m3], 1.763 [kg/m3], 8.544 × 10−4 [Pa · s],
1.862 × 10−5 [Pa · s], respectively, where subscripts w and a represent water and air phases.
The gravitational acceleration g is 9.81 [m/s2].

Figure 3: Calculation area and
initial condition of water column

Figure 4: Distributions of ϕρ in Case3
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Figure 4 shows the distributions of ϕρ in Case 3. From the figures, objects become larger
in time and they disturb dam-break flow. Flow paths become narrower with the swelling of
objects. Figure 5 shows the distributions of ϕρ at t = 0.25 [s] in each case. The figures in
Cases 2, 3 and 4 show that the dam-break flows are disturbed by the objects. Especially in
Case 4, the flow is stopped by the swelled objects and the water is trapped in the left side
of them. Figure 6 shows the time history of water surface heights HL at the left end of the
calculation area and the length 6r normalized by L/2, where 6r represents the summation
of the thickness of solid objects on the vertical plane at x1 = 2L/5. The reference time
t1 = 0.25 [s] which is the time swelling stops in Case 4. In Case 1, the result is plotted until
t = 4t1 since the front position has already reached the right wall. In Cases 1, 2 and 3, the
water surface heights become smaller in time. On the other hand, in Case 4 the normalized
water surface height stays around 0.6 which is the total height of objects at x1 = 2L/5 after
swelling stops. This shows the water is trapped by swelled objects in Case 4.

Figure 5: Distributions of ϕρ at t = 0.25 [s] Figure 6: Time history of HL and 6r
normalized by L/2
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