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Abstract. This paper proposes the new fully explicit computational method for thermal
interactions between solid objects and compressible low Mach number gas flows. The pro-
posed method enables us to simultaneously calculate non-isothermal fluid flows and heat
conduction in solid objects on the Cartesian grid system since the phase-averaged model is
adopted. In addition, the Courant-Friedrichs-Lewy (CFL) condition for compressible fluids
is improved by the control method for the speed of sound. The proposed method is applied
to two different numerical experiments and its applicability is discussed.
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1. Introduction

Thermal interactions between solid objects and fluid flows are important phenomena in
many engineering subjects. Especially, in some practical problems, large temperature differ-
ences occur and the compressibility of fluids is non-negligible even though the flow Mach
number is sufficiently small.

On the basis of such background, the computational method for the thermal interactions
between solid objects and compresssible fluids was proposed in our previous study [1]. The
proposed method enables us to treat complicated shaped and moving solid objects on a
simple Cartesian grid system. In addition, the pressure terms in the governing equations
for the compressible fluid were treated implicitly to improve the Courant-Friedrichs-Lewy
(CFL) condition based on the speed of sound. On the other hand, we proposed the fully
explicit scheme for non-isothermal flows by adopting the control method for the speed of
sound [2].

In this study, the new fully explicit computational method, which enables us to calcu-
late thermal interactions between solids and compressible low Mach number gas flows, is
proposed by combining the above two methods. The proposed method is applied to two
different numerical experiments and its applicability is discussed.
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2. Numerical method

In this study, a multiphase field consisting of an ideal gas and solid objects (rigid body) is
treated as a one-fluid [1] on the Cartesian grid system. To stably calculate mechanical and
thermal interactions between solid and fluid phases, which have different physical proper-
ties, with simple numerical procedures, we consider two types of multiphase field, namely,
multiphase fields A and B, as shown in Fig. 1 [1].
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Figure 1: Two types of multiphase field considered in computations [1]

In the multiphase field A, we assume that the solid area is full of the fluid. Hereinafter,
the ideal gas around the solid object is referred to as a “fluid 1” and solid area is referred to
as a “fluid 2”. The fluids 1 and 2 are immiscible, while they have same physical properties.
The phase-averaged governing equations for the multiphase field A (consisting of fluids 1
and 2) are given by the following mass conservation, momentum, and energy equations:
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where t is the time, xi is the component of Cartesian coordinates, ρ is the volume-averaged
density, ui is the mass-averaged velocity, fi is the external force, and e is the mass-averaged
internal energy, respectively. The phase-averaged viscous stress τi j is calculated from ui

based on our previous study [1].
In Eqs. (2) and (3), p′ is the approximated pressure [2] that enables us to control the

speed of sound defined as

p′ ≡ p0 + αp̃ + (1 − α)P̄ (4)

where p0 is the initial pressure, α is the constant value to control the speed of sound, which
satisfies 0 < α ≤ 1. The pressure fluctuation p̃ is defined as p̃ ≡ p− p0 and p is the pressure
that satisfies the equation of state for ideal gas. In addition, P̄ in Eq. (4) is the spatially
averaged value of p̃. By adopting p′ in Eqs. (2) and (3), the CFL condition based on the
speed of sound is improved depending on the value of α [2].
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As for the multiphase field B, we calculate the phase-averaged heat conduction equation
considering physical properties of solid objects as follows:

∂(ρCV )mT
∂t

=
∂

∂x j

(
λm
∂T
∂x j

)
(5)

where CV is the specific heat at constant volume, λ is the heat conductivity, and subscript m
represents the volume-averaged values between the fluid 1 and the solid object. The above
governing equations for the multiphase fields A and B are discretized with the finite volume
method on the collocated grid system and solved by the fully explicit method proposed by
our previous study [2]. In addition, the mechanical interactions between fluid and solid
phases are estimated by the phase-averaging operation for the momentums [1].

3. Results and discussion

3.1. Natural convection in a square cavity containing 16 circular cylinders

The proposed method is applied to the natural convection in a square cavity containing 16
circular cylinders [3, 4] as shown in Fig. 2. The porosity of the cavity is 0.64. The left
and right walls are heated and cooled at the constant temperature Th and Tc, respectively.
The temperature difference ∆T between side walls is 1.5 [K] to compare with the reference
results [3, 4] obtained by conventional incompressible fluid solvers. The Rayleigh number
is 105 and Prandtle number is 0.7. Three different values of the heat conductivity ratio λs/λ f

are considered, namely λs/λ f = 1, 10, and 100. Here, λs and λ f are heat conductivities of
solid and fluid phases. The number of computational cells is 600 × 600.

Table 1 shows the averaged Nusselt number Nu on the left wall in the steady state. As
given by Table 1, predicted Nusselt numbers are in good agreement with reference results.
In addition, the maximum value of the Courant number Ca based on the speed of sound is
about 36.2 by adopting α = 5.0 × 10−4. The Courant number Ca is calculated as follows:

Ca = max
{
|u1| + A
∆x1

∆t,
|u2| + A
∆x2

∆t
}

(6)

where A, ∆t, and ∆xi (i = 1, 2) are the speed of sound, the time increment, and the compu-
tational cell size in i-th direction, respectively.
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Figure 2: Computational area
containing 16 circular cylinders

Table 1: Comparison of Nu in steady state
λs/λ f Present Ref. 1 [3] Ref. 2 [3] Ref. 3 [4]
1 1.2426 1.2614 1.2986 1.2403
10 2.0398 2.0429 2.0375 2.0153
100 2.4317 2.2957 2.2656 2.3357
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3.2. Heat transfer around a rotating gear-shaped solid

Figure 3 shows the computational area. The central circular area of the gear-shaped solid
is heated at Th (= 500 [K]) and all boundaries of the computational area are cooled at Tc

(= 300 [K]). The angular velocity ω is π [rad/s]. The fluid is the ideal gas that has same
physical properties as the air. The density, the specific heat at constant pressure, and the
heat conductivity of the solid object are ρs/ρ f = 10.0, CP,s/CP, f = 0.20, and λs/λ f = 15.0,
respectively. The number of computational cells is 200 × 200. In addition, α is 1.0 × 10−4

and the predicted maximum value of Ca is about 87.8.
Figure 4 shows the temperature distribution at t = 3.5 [s]. The thermal interactions are

stably predicted improving the CFL condition based on the speed of sound. In addition, the
predicted maximum change rate of the fluid density is about 23.2%. This result shows that
the compressibility of the fluid is non-negligible in this numerical experiment.
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Figure 3: Computational area containing
rotating gear-shaped solid
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Figure 4: Temperature distribution (t =
3.5 [s])
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