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Abstract. In the computations of incompressible fluids, it is essentially important to obtain
the velocity and pressure fields that satisfy the incompressible condition (∇ · u = 0) with
sufficient accuracy. For this purpose, a pressure-velocity correction method (C-HSMAC
method) has been proposed [1] in a finite volume fluid computations. In the C-HSMAC
method, three equations including pressure-Poisson equations are iteratively solved until
|∇ · u| < ϵD are satisfied in all computational cells with the given threshold ϵD. In this
paper, it will be demonstrated that the C-HSMAC method is effective to calculate a simple
passive-scalar convection in a two-dimensional cavity flow with an oscillating upper wall.
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1. Introduction

The accurate computation that satisfies the incompressible condition, ∇·u = 0, is essentially
important in the computations of incompressible fluid, since the numerical errors arising
from this condition cause the unphysical change of volume of the fluid [1] as well as other
unphysical values of variables which will be shown in this paper. It is noted that such nu-
merical errors from the incompressible conditions are essentially different from the inherent
compressibility of the actual fluid properties.

In order to suppress the errors for ∇ · u = 0 and control the values ∇ · u explicitly in the
numerical procedures, which are not possible in the usual SMAC methods [2], the pressure-
velocity correction method, the C-HSMAC method, has been proposed and utilized in the
preceding studies [1] [3] [4]. Although the similar computation method that is able to control
∇ ·u was proposed as a HSMAC or SOLA method [5] in 1980, it has also been reported that
the computational efficiency of the C-HSMAC method is much better than the HSMAC or
the SOLA method in our previous paper [6].
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In this paper, it will be shown that the convection of passive scalar is affected by the
numerical errors arising from the incompressible condition in the finite volume method and
that the present C-HSMAC method enables us to obtain the reasonable numerical solutions
in the passive scalar problem.

2. Numerical procedures

The governing equations for an isothermal incompressible Newtonian-fluid are given by the
following incompressible condition and momentum (NS) equations respectively:
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with the convection equation of passive scalar c given by

∂c
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= 0 (3)

where t is time, xi is the i−component of the orthogonal coordinates, ui is the velocity
component in xi direction, ρ is density, p is pressure and ν is kinematic viscosity. In the
following computations, ρ and ν are treated as constants.

The governing equations are discretized with a finite volume method in the collocated
grid system [4]. In order to focus on the accuracy of the pressure-velocity correction method,
a first-order upwind method was applied to all convection terms to suppress the numerical
oscillations. In the pressure computation procedures, the following C-HSMAC method is
used, in which pressure-Poisson equations are solved as well as the updates of pressure and
velocity components:

do k = 1, 2, · · · , km
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enddo
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where φ = pn+1 − pn, ∆t is time increment, ub,i is cell-boundary velocity which is estimated
with spatial interpolation of ui defined at cell-center point, and ϵD is the given threshold.

After the above iterative computations, |∇·u| < ϵD are satisfied in all computational cells
used in the finite volume method.

3. Results and discussion

Figure 1 (a) shows the initial conditions and square cavity where the lengths are 1.0 both in
x1 and x2 directions. In the initial conditions, the fluid is static and the scalar c is set 1.0 in
x2 ≤ 0.5 and 0.0 in x2 > 0.5. The velocity U of the upper wall is given by U = cos(ωt) as
shown in Fig. 1 (a), where ω = 2π.

On the other wall boundaries, non-slip conditions were imposed for velocity, while
∂p/∂n = 0 and ∂c/∂n = 0 are applied to the pressure and scalar on all boundaries. The
other conditions are as follows: ν = 1.0×10−2, ∆t = 2.0×10−2 and cell numbers are 20×20
in x1 and x2 directions. The threshold ϵφ for pressure-Poisson equation given by Eq.(4) is
1.0 × 10−3 and ϵD = 1.0 × 10−10. To prevent the numerical oscillation in the higher-order
numerical schemes, the upwind method is used for all convection terms.

(a) Computational area and conditions (b) Time history of maximum values of c

Figure 1: Computation of passive scalar c in 2D cavity

Figure 1 (b) shows the time-history of the maximum values of scalar c in the cavity. The
SMAC method in Fig. 1 (b) corresponds to the computations with iterative number km = 1
in the C-HSMAC method. As shown in Fig. 1 (b), the unphysical overshooting values,
cmax > 1.0, can be found, although the stable upwind method is used for all convection
terms. Meanwhile, the reasonable values, cmax ≈ 1.0, are maintained in the results of the
C-HSMAC method in Fig. 1 (b). The maximum overshooting values are as much as 4%
in the case shown in Fig. 1 (b), which are caused by the numerical errors arising from
incompressible condition. Therefore, it can be concluded that it is essentially important
to solve the incompressible condition as accurately as possible in the computation passive
scalar and that the C-HSMAC method is effective for this purpose.
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