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Abstract.
In this study, we propose a fully explicit computational method for compressible natural

convection based on the fractional step method and a reduction technique of the pressure
propagation. Since the Courant-Friedrichs-Lewy (CFL) condition based on the speed of
sound is improved according to the reduction coefficient, the time increment of the pro-
posed method can be set on the same order as that of a convectional semi-implicit method,
which treats pressure terms implicitly. As a result of the application to the natural con-
vection in a square cavity, it is demonstrated that the proposed method enables to conduct
computations about 6 ∼ 8 times faster than the conventional semi-implicit method by setting
the appropriate reduction coefficient.
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1. Introduction

In our previous study [1], a fractional step method for non-isothermal compressible gas
flows was proposed to calculate thermal interactions between fluids and solid objects under
high temperature difference conditions. In our previous method, pressure terms in govern-
ing equations written in conservative form are treated implicitly to improve the Courant-
Friedrichs-Lewy (CFL) condition based on the speed of sound. As a result, our previous
method enables to calculate compressible low Mach number flows using the time increment
comparable to that in conventional incompressible flow solvers. However, it is considered
that the computational stage of simultaneous linear equations becomes a bottleneck of per-
formance in future large-scale parallel computations. Thus, we propose a new fully explicit
scheme for the natural convection with the governing equations of the compressible fluid by
using a reduction technique for the pressure propagation.
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2. Numerical method

The governing equations of the compressible fluid (ideal gas) are given by following mass
conservation, momentum, and energy equations:
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where t is the time and xi is the component of orthogonal coordinates, respectively. In
addition, ρ is the density, ui is the velocity component in xi direction, τi j is the viscous stress
tensor, and fi is the external force component in xi direction, respectively. Furthermore, p′

is the approximated pressure, λ is the thermal conductivity, T is the temperature, and CV is
the specific heat at constant volume, respectively. The fluid is assumed to be the ideal gas.
Thus, τi j and the equation of state are given by as follows:
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where, µ is the coefficient of viscosity, p is the actual pressure, and γ is the specific heat
ratio, respectively. On the other hand, p is rewritten as follows with the fluctuation p̃ from
the initial pressure:

p = P0 + p̃ = P0 + αp̃ + (1 − α) p̃ (6)

where P0 is the initial pressure and α is the constant coefficient which satisfies 0 < α < 1.
In this study, we approximate p̃ in the third term on the right hand side of Eq.(6) by P̄
which is the spatially averaged value of p̃. As a result of this approximation, p′ is defined
as p′ ≡ P0 + αp̃ + (1 − α)P̄.

By using the above approximation for the pressure, we obtain the propagation equation
of p̃ in isentropic flows and in the very short time period from the initial state as follows:

∂2 p̃
∂t2 = αa2

0
∂2 p̃
∂x2

i

(7)

where a0 is the speed of sound given by a0 =
√

(γp0)/ρ0 with the initial pressure p0 and
density ρ0. Equation (7) represents that the speed of sound decreases to

√
αa0 (0 < α <

1). Thus, the larger time increment can be adopted in the proposed method since the CFL
condition based on the speed of sound is improved depending on the value of α.

The numerical procedure of the proposed method is divided into three stages [1], ad-
vection, diffusion, and acoustic stages, and variables are updated fractionally in each com-
putational stage. In our previous study [1], the pressure terms are treated implicitly in the
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acoustic stage to improve the CFL condition based on the speed of sound. By contrast, p′ is
adopted in this study, and the next time step velocity un+1

i and pressure p′n+1 are calculated
explicitly as follows:

un+1
i = u∗∗i + ∆t

(
− 1
ρ∗∗
∂p′∗∗

∂xi
+ fi

)
(8)

p′n+1 = p′∗∗ − α∆t(1 − γ)p∗∗
∂un+1

i

∂xi
(9)

where ∆t is the time increment and the superscript ∗∗ represents the variable updated in
the diffusion stage. By updating un+1

i and p′n+1 as given by Eqs. (8) and (9), the proposed
method enables to calculate compressible low Mach number flows efficiently without solv-
ing the simultaneous linear equations.

3. Results and discussion

The proposed method is applied to the natural convection in a square cavity using 1 core of
the supercomputer system in Kyoto University (CRAY CS400 2820XT, Intel Xeon Broad-
well 18cores 2.1GHz x 2 / node). Figure 1 shows the computational area. In this application,
the left hand side wall is heated at Th, and the right hand side wall is cooled at Tc. In addi-
tion, adiabatic conditions are imposed on top and bottom walls. The Prandtle number and
the specific heat ratio of the fluid are 0.71 and 1.40, respectively. The different Rayleigh
numbers Ra are considered in this application, namely Ra = 103 and 106. For Ra = 103,
β∆T is 3.33 × 10−3 (<< 1). Here, β and ∆T are the coefficient of volume expansion of
the fluid and the temperature difference between heated and cooled walls, respectively. By
contrast, β∆T is 0.33 for Ra = 106 to consider the influence of the fluid compressibility.

The computations are conducted for different values of α with the time increment ∆t
that derives the maximum Courant number Ca,max based on the speed of sound in the steady
state given by Table 1. Here, the Courant number Ca is calculated as follows:

Ca = max
{ |u1| + a
∆x1

∆t,
|u2| + a
∆x2

∆t
}

(10)
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Figure 1: Computational area of natural convection in a square cavity
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Table 1: Ca,max in steady state

α 1.00 0.50 0.10 1.00 × 10−3 5.00 × 10−5 1.00 × 10−5

Ra = 103

Ca,max 1.06 1.55 3.51 33.4 1.55 × 102 3.34 × 102

Ra = 106

Ca,max 1.13 1.57 3.58 35.8 1.57 × 102 −

Table 2: Comparison of S E/S I

α 1.00 0.50 0.10 1.00 × 10−3 5.00 × 10−5 1.00 × 10−5

Ra = 103

S E/S I 40.4 27.6 12.2 1.28 0.277 0.128
Ra = 106

S E/S I 21.4 15.5 6.82 0.680 0.156 −

The calculated Nusselt numbers Nuh on the heated wall are 1.12 and 8.54 for Ra = 103

and 106 regardless of the values of α. This result shows that α has negligible effects on the
accuracy of the computations within the range of values set in this application. In addition,
Nuh are also in good agreement with those reported by the previous numerical study [2]
in which the incompressible fluid solver was used. By contrast, some discrepancies occur
between our results and reference results [2] in Ra = 106 since the fluid compressibility is
non-negligible in our computational conditions (β∆T = 0.33).

The comparison of the computational elapsed time is given in Table 2. In Table 2, S E

and S I are elapsed times to calculate by t′ = 1.00 with the proposed fully explicit method
and the conventional semi-implicit method in which the simultaneous linear equations are
solved by the Bi-CGSTAB method. The non-dimensional time t′ is defined as t′ ≡ tDT/L2.
Here, DT and L are the thermal diffusivity and the length of the square cavity, respectively.
In addition, Ca,max in Ra = 103 and 106 obtained by the semi-implicit method are 8.16×102

and 8.73 × 102, respectively. As shown in Table 2, S E is reduced when the smaller α is
set in the computations since the larger ∆t can be adopted by the reduction technique of the
pressure propagation which improves the CFL condition based on the speed of sound. As a
result, the proposed fully explicit method enables to calculate the natural convection about
6 ∼ 8 times faster than the semi-implicit one by using appropriate values of α.

References

[1] D. Toriu, S. Ushijima: Multiphase computational method for thermal interactions
between compressible fluid and arbitrarily shaped solids, International Journal for
Numerical Methods in Fluids, 87:8 (2018), 383–400.

[2] G. Barakos, E. Mitsoulis, D. Assimacopoulos: Natural convection flow in a square
cavity revisited: laminar and turbulent models with wall functions, International Jour-
nal for Numerical Methods in Fluids, 18:7 (1994), 695–719.

308


