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Abstract. In this study, the implicit Eulerian method was proposed for incompressible flows
including deformable solid objects, which are hyperelastic bodies with additional viscosity.
The proposed method enables us to calculate the fluid flows and the large deformation of
solid objects on the fixed Eulerian computational grid. In addition, the implicit method,
which is called C-ISMAC method, is applied to the prediction stage of the MAC method
to reduce the computational time in addition to maintain the higher-order accuracy of the
schemes. The numerical experiments were conducted for the transportation of multiple
deformable objects between parallel two plates with cyclic boundary conditions. As a re-
sult, the interactions between fluids and deformable objects were reasonably predicted with
different shear modulus G. In addition, it was confirmed that the macroscopic viscosity
depends on the G of the included multiple bodies.
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1. Introduction

Fluid flows including multiple deformable objects are important problems in various engi-
neering fields and many numerical studies have been conducted so far to predict the charac-
teristics of the flows and deformation of objects [1, 2, 3, 4].

In this study, an implicit method, which is called C-ISMAC method [5], is applied
to full Eulerian method for incompressible Navier-Stokes fluids including deformable ob-
jects [3, 4], which are hyperelastic bodies with additional viscosity. The C-ISMAC method
allows us to reduce the computational time and to maintain the numerical accuracy of the
schemes as well. Since the full Eulerian method is employed in this study to solve both
of the fluids and solid objects in a fixed Eulerian grid, the proposed method enables us to
calculate the interactions between fluids and solid objects at the same time. To confirm
the applicability of the proposed method, the numerical experiments are conducted for the
Navier-Stokes fluids between two parallel plates including multiple deformable objects. The
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relationship between the shear modulus and the macroscopic viscosity is discussed through
these numerical experiments.

2. Numerical methods

The phase-averaged governing equations are derived for the multiphase fields consisting
of incompressible Navier-Stokes fluids and visco-hyperelastic solid objects with additional
viscosity, which are called ’deformable objects’ hereafter. The governing equations are
given by the following incompressible condition and momentum equations respectively:
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where t is time, xi is the component of Cartesian coordinate system, ρ is density, p is pres-
sure, µ is the coefficient of viscosity and G is shear modulus. In addition, ui is the velocity
component and fi is the external force in xi direction. Di j is the component of the deforma-
tion rate tensor and ϕs is solid volume fraction in a computational cell. B∗′i j is the deviation
tensor of B∗i j given by ϕ1/2

s Bi j which is the left Cauchy-Green deformation tensor. The equa-
tions of ϕs and B∗i j are given as follows:
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The governing equations are discretized on the collocated grid system and they are solved
based on the MAC method [6]. In addition, the C-ISMAC method [5] is used for the calcu-
lation of B∗i j and tentative velocity u∗i in the prediction stage.

3. Results and discussion

The proposed method was applied to the Navier-Stokes fluids between two parallel plates
including multiple deformable objects. Figure 1 shows the two-dimensional computational
area and initial conditions. The radius of circular object is 0.05 and the lengths of the
computational area l1 and l2 are 1.0. In addition, the non-slip conditions are imposed on the
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top and bottom boundaries while the periodic boundary conditions are imposed on the left
and right boundaries. The numbers of the computational cells in each direction, n1 and n2 in
x1 and x2 directions respectively, are set as n1 = n2 = 280. The external force f acting in x1
direction is 9.8×10−2. It is assumed that the physical properties of the solid objects are equal
to those of the fluid phase. Thus, the coefficients of viscosity as well as the densities of both
fluids and solid objects are µ = 1.0 and ρ = 1.0 respectively. In the numerical experiments,
two different values of G are examined; G = 0.1 and G = 0.5.

Figure 1: Computational area and boundary conditions

Figure 2 shows the isolines of ϕs = 0.5 that indicate the shapes of solid objects as
well as the contour maps of the vorticity component Ω. In Fig. 2, it can be seen that the
deformations of solid bodies with G = 0.1 are larger than those of G = 0.5 and that the
vorticity distributions arise around the solid bodies due to the interactions of two phases.

(a) G = 0.1 (b) G = 0.5

Figure 2: Isolines of ϕs = 0.5 and contour maps of Ω (t=70)

Figure 3 shows the distributions of u1 and the time histories of the normalized flow rate
Q/Qth, where the Q is the calculated flow rate and Qth is the theoretical value in laminar
flow without solid bodies (G = 0.0) given by Qth = f l32/(12ρν0), in which ν0 is ν without
any solid objects. As shown in Figs.3 (a) and (b), it is confirmed that u1 and Q decrease
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when the value of G becomes larger. From the above results, the macroscopic viscosity νm
is estimated with νm = f l32/(12ρQ). The values of νm/ν0 for G = 0.1 and G = 0.5 are
1.19 and 1.27, respectively. This result shows that the macroscopic viscosity depends on
the value of G and that νm/ν0 becomes large when G increases in the range of the present
numerical experiments.

(a) distributions of u1 (b) time histories of Q/Qth

Figure 3: Distributions of u1 and time histories of Q/Qth
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