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ABSTRACT
In this study, we applied a computational method

for non-isothermal compressible flows around mov-
ing solid objects based on the mixture model to heat
transfer around a rotating triangular solid object. In
our proposed method, cell-averaged governing equa-
tions for multiphase fields consisting of compress-
ible gas and solid objects are solved by a compu-
tational method for compressible low Mach number
flows. Thus, the proposed method enables to calcu-
late non-isothermal compressible gas flows around
moving solid objects on an orthogonal grid system.
As a result of the computation, it was demonstrated
that the proposed method enables to predict the heat
transfer around the rotating triangular solid object
while considering the physical properties of the solid
body appropriately. In addition, the obtained max-
imum rate of the gas density change was about 17%
when gas flows and convective heat transfer are fully
developed around the solid object. From this result,
it was confirmed that variations of the gas density are
non-negligible in this application.

Keywords: fluid-solid thermal interaction, mix-
ture model, moving solid object, non-isothermal
compressible flow

NOMENCLATURE

a [m/s] speed of sound
CP, CV [J/(kg · K)] specific heat at constant

pressure and volume
e [J/kg] internal energy
fi [m/s2] acceleration of external force
g [m/s2] gravitational acceleration
p [Pa] pressure
qi [W/m2] heat flux component
T [K] temperature
t [s] time
ui [m/s] velocity component

xi [m] orthogonal coordinate
component

β [1/K] coefficient of thermal
expansion

γ [-] specific heat ratio
∆T [K] characteristic temperature

difference
∆t [s] time increment
∆xi [m] cell size in xi direction
δi j [-] Kronecker’s delta
λ [W/(m · K)] thermal conductivity
µ [Pa · s] coefficient of viscosity
ρ [kg/m3] density
σi j [Pa] stress
τi j [Pa] viscous stress
ϕk [-] volume fraction of phase k

Subscripts and Superscripts

f 1 fluid 1
f 2 fluid 2
f fluid 1 and 2
s solid
0 value at initial condition
′ non-dimensional value

1. INTRODUCTION
Thermal interactions between fluids and moving

solid objects are important phenomena in engineer-
ing and many numerical studies have been conduc-
ted [1, 2, 3]. However, most of the previous studies
were based on the fluid incompressibility assump-
tion and little study has been done to the problems
in which variations of fluid density due to temperat-
ure and pressure differences are non-negligible.

Against the aforementioned background, we
proposed a new computational method for non-
isothermal compressible flows around solid objects
based on the mixture model [4, 5]. In our pro-



posed method, cell-averaged governing equations
for multiphase fields are solved by the compu-
tational method for non-isothermal compressible
flows, which can be applied to low Mach num-
ber flows by adapting the implicit time integration
in pressure calculations to improve the Courant-
Friedrichs-Lewy (CFL) condition based on the speed
of sound. Since the cell-averaged governing equa-
tions are derived based on the mixture model, the
proposed method enables to calculate thermal inter-
actions between compressible gas and solid objects
without setting the adaptive grid to phase boundar-
ies. The proposed method was applied to the heat
transfer around stationary solid objects and we con-
firmed that the reasonable temperature distributions
are predicted through the comparisons with by previ-
ous experimental and numerical results [4, 5].

In this study, the proposed method is applied to
the heat transfer around a rotating triangular solid in
a square cavity. The central circular area of the trian-
gular solid is heated at 400 K and all boundaries of
the computational area are cooled at 300 K. Thus, it
is expected that variations of gas density due to the
temperature difference are non-negligible when the
gas flow and convective heat transfer are fully de-
veloped around the solid object. In addition, two dif-
ferent physical properties of the solid are considered
in this study. For the case 1, density, specific heat,
and thermal conductivity of the solid are set equal to
those of the gas. By contrast, physical properties of
iron (Fe) are considered in the case 2. The influence
of such differences in physical properties is discussed
through comparisons of predicted results.

2. NUMERICAL METHOD
2.1. Governing equations for multiphase

field
In this study, a multiphase field consisting of an

ideal gas and moving solid objects (rigid body) is
treated as a one-fluid that has uniform physical prop-
erties. Hereinafter, the ideal gas around the solid ob-
ject is referred to as a“ fluid 1”. By contrast, the
solid area is assumed to be a“fluid 2”that has phys-
ical properties of the fluid 1 as shown in Figure 1.
In addition, temperature and velocity of the fluid 2
are same value as those of the solid. Based on this
assumption, phase-averaged governing equations for
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Figure 1. Multiphase fields considered in this
study and definitions of ϕ f 1, ϕ f 2, and ϕs

the multiphase field consisting of two immiscible
fluids are derived based on the mixture model [6].
We adopt the orthogonal grid system in this study
and governing equations for the one-fluid (referred
to hereinafter as a“ phase-averaged mixture”) are
derived based on the volume fractions of phases, ϕ f 1
and ϕ f 2, in each computational cell as shown in Fig-
ure 1 to easily treat moving solid boundaries.

Derived governing equations for the multiphase
field are solved by a computational method for non-
isothermal compressible flows that enables to cal-
culate low Mach number flows free from the CFL
condition based on the speed of sound [4]. In addi-
tion, we adopt averaging methods for momentums of
the phase-averaged mixture and the heat conduction
equation considering the physical properties of solid
objects in suitable computational stages to accurately
estimate effects of the solid phase on flow and tem-
perature fields.

The phase-averaged governing equations for the
fluid 1 and 2 are given by the following mass, mo-
mentum, and energy equations:

∂ρ

∂t
+
∂(ρui)
∂xi

= 0 (1)

∂(ρui)
∂t
+
∂(ρuiu j)
∂x j

=
∂σi j

∂x j
+ ρ fi + Mi (2)

∂(ρe)
∂t
+
∂(ρeu j)
∂x j

= σi j
∂ui

∂x j
+ E − Miui (3)

where ρ, ui, σi j, and e are density, velocity, stress,
and internal energy of the phase-averaged mixture
consisting of the fluid 1 and 2, respectively. In addi-
tion, Mi is the mixture momentum source due to sur-
face tension and E is the mixture total energy source
from interfaces [6]. In this study, we assume the ef-
fects of these terms to be negligible compared with
other terms (Mi ≈ 0 and E ≈ 0). Actually, it was
confirmed that the reasonable results can be obtain
with the above assumption for Mi and E through the
application to the experiment on the natural convec-
tion around a horizontal circular cylinder [5]. As
given by Eq. (3), a heat flux term is not considered
in the energy equation for the phase-averaged mix-
ture consisting of the fluid 1 and 2 since heat con-
duction is estimated in a computational stage for the
phase-averaged mixture consisting of the fluid 1 and
the solid.

Phase-averaged variables ρ, ui, σi j, and e are
defined as

ρ =
∑

k

ϕkρk (4)

ui =
1
ρ

∑
k

ϕkρkuk,i (5)

σi j =
∑

k

(ϕkσk,i j − ϕkρkwk,iwk, j) (6)



e =
1
ρ

∑
k

(
ϕkρkek +

1
2
ϕkρkw2

k,i

)
(7)

where k = f 1, f 2 and wk,i is defined as wk,i ≡ uk,i −
ui. Subscripts f 1 and f 2 represent the fluid 1 and 2,
namely ρ f 1 represents the density of the fluid 1. In
addition, we assume that wk,i is negligible (wk,i ≈ 0)
by setting fine computational cells for the solid size.
Consequently, Eqs. (6) and (7) are simplified as

σi j =
∑

k

ϕkσk,i j (8)

e =
1
ρ

∑
k

ρkek (9)

In this study, we also assume that differences
between T f 1 and T f 2 (= Ts) in all computational cells
are sufficiently small (T f 1 ≈ T f 2 (= Ts)) by setting
fine computational cells for the solid size. On the
basis of this assumption, the relationship between e
and T is approximately given by

e =
1
ρ

∑
k

ϕkρkCV,kTk =
1
ρ

CV, f

∑
k

ϕkρkTk

≈ 1
ρ

CV, f T
∑

k

ϕkρk = CV, f T (10)

where k = f 1, f 2. In addition, CV, f represents uni-
formly the specific heat at constant volume of the
fluid 1 and 2 because of the assumption that CV, f 2 is
equal to CV, f 1. The stress of the phase-averaged mix-
ture consisting of the fluid 1 and 2 is approximately
estimated as follows [4]:

σi j = −
∑

k

ϕk pkδi j +
∑

k

ϕkτk,i j

= −pδi j +
∑

k

ϕkτk,i j ≈ −pδi j + τi j (11)

where k = f 1, f 2 and p is defined as p =
∑

k ϕk pk.
Herein, we use the following approximation for τi j to
estimate σi j simply from ui [4]:

τi j =
∑

k

ϕk

{
µk

(
∂uk,i

∂x j
+
∂uk, j

∂xi

)
− 2

3
µk
∂uk,m

∂xm
δi j

}
≈ µ f

(
∂ui

∂x j
+
∂u j

∂xi

)
− 2

3
µ f
∂um

∂xm
δi j (12)

where k = f 1, f 2.

The equation of state for the phase-averaged
mixture consisting of the fluid 1 and 2 is derived as
follows based on the assumption that physical prop-
erties of the two fluids are uniform and T f 1 ≈ T f 2:

p =
∑

k

ϕk pk =
∑

k

ϕkρk(γk − 1)CV,kTk

≈ (γ f − 1)CV, f T
∑

k

ϕkρk

= ρ(γ f − 1)CV, f T (13)

where k = f 1, f 2.
The heat conduction is estimated in the compu-

tational stage for the phase-averaged mixture consist-
ing of the fluid 1 and the solid. The heat conduction
equation on this stage is given by

∂(ρCV )mT
∂t

= −
∂qm, j

∂x j
(14)

The subscript m represents the phase-averaged mix-
ture consisting of the fluid 1 and the solid. Here,
(ρCV )m is given by

(ρCV )m =
∑

k

ϕkρkCV,k (15)

where k = f 1, s. In addition, s represents the solid
phase. The heat flux qm,i is estimated as follows
based on the assumption that T f 1 ≈ T f 2 (= Ts):

qm,i =
∑

k

ϕkqk, j = −
∑

k

ϕkλk
∂Tk

∂xi

≈ −
∑

k

ϕkλk

 ∂T∂x j
= −λm

∂T
∂x j

(16)

where k = f 1, s and λm is given by

λm =
∑

k

ϕkλk (17)

In this study, Eqs. (1), (2), (3), and (14) are solved
by a numerical algorithm for compressible low Mach
number flows [4, 5].

2.2. Numerical procedure
The numerical procedure of the proposed

method is divided into advection, diffusion, and
acoustic stages [4]. Hereinafter, variables updated in
these stages are represented as Q∗, Q∗∗, and Qn+1,
respectively. Discretizations of the Eqs. (1), (2),
(3), and (14) are conducted on an orthogonal colloc-
ated grid system based on the finite volume method
(FVM). In the advection and diffusion stages, Euler
method is adopted and variations of variables due to
the advection and diffusion terms are estimated expli-
citly. By contrast, the pressure at the next time step is
calculated by implicit time integration in the acoustic
stage to adopt a large time increment for compress-
ible low Mach number flows free from the CFL con-
dition based on the speed of sound.

In the advection stage, we explicitly solve advec-
tion equations for the phase-averaged mixture con-
sisting of the fluid 1 and 2 as follows:

ρ∗ − ρn

∆t
+
∂(ρnun

j )

∂x j
= 0 (18)

(ρui)∗ − (ρui)n

∆t
+
∂{(ρui)nun

j }
∂x j

= 0 (19)

(ρe)∗ − (ρe)n

∆t
+
∂{(ρe)nun

j }
∂x j

= 0 (20)



The advection terms are discretized with the FVM
and the third order MUSCL-TVD scheme [7]. There-
fore, mass conservation is satisfied sufficiently in the
proposed method.

To consider effects of moving solid objects on
flow fields, we conduct the following averaging op-
eration for momentums:

u∗i =
1
ρ∗m

[
ϕn

f 1(ρui)∗ + ϕn
s(ρui)s

]
(21)

where ρm is given by

ρ∗m = ϕ f 1ρ
∗ + ϕsρs (22)

We conduct the same averaging operations for the
momentums in the following diffusion and acoustic
stages.

In the diffusion stage, the momentums and the
pressure are calculated on the basis of the govern-
ing equations for the phase-averaged mixture con-
sisting of the fluid 1 and 2. By contrast, the calcu-
lation of the temperature is divided into two steps. In
the first step, the tentative temperature T ′ is calcu-
lated on the basis of the governing equations for the
phase-averaged mixture consisting of the fluid 1 and
2. In the second step, we obtain T ∗∗ from T ′ using the
heat conduction equation (14) as shown in Figure 2
to consider effects of the solid object on temperature
fields appropriately.

The governing equations in the diffusion stage
are given as follows for the phase-averaged mixture
consisting of the fluid 1 and 2:

ρ∗∗ − ρ∗
∆t

= 0 (23)

(ρui)∗∗ − (ρui)∗

∆t
=
∂τ∗i j

∂x j
(24)

(ρe)∗∗ − (ρe)∗

∆t
= τ∗i j

∂u∗i
∂x j

(25)

From Eqs. (24) and (25), u∗∗i and T ′ are estimated as
follows:

u∗∗i − u∗i
∆t

=
1
ρ∗

∂τ∗i j

∂x j
(26)

Diffusion phase

Fluid1 + Fluid2

u*, p*             u**, p**

Fluid1 + Fluid2 Fluid1 + Solid

T *                    T ’                                 T **  

Figure 2. Updating method for variables in diffu-
sion stage [4]

T ′ − T ∗

∆t
=

1
ρ∗CV, f

∂(τ∗i ju
∗
i )

∂x j
−
ρ∗(u∗∗2i − u∗2i )

2∆t

 (27)

To consider effects of the solid object on temper-
ature fields, T ∗∗ is estimated on the basis of the heat
conduction equations for the phase-averaged mixture
consisting of the fluid 1 and the solid as follows:

T ∗∗ − T ′

∆t
=

1
(ρCV )∗m

∂

∂x j

(
λm
∂T ∗∗

∂x j

)
(28)

On the right-hand side of Eq. (28), (ρCV )∗m and λm
are given by

(ρCV )∗m = ϕ
n
f 1ρ
∗
f 1CV, f 1 + ϕ

n
sρsCV,s (29)

λm =
∑

k

ϕn
kλk (30)

where k = f 1, s and ρ∗f 1 is estimated by

ρ∗f 1 =
ρ∗ − ϕn

f 2ρ f 2

ϕn
f 1

(31)

When the computational area contains isothermal
solid objects, T ∗∗ is calculated by the following equa-
tion instead of by Eq. (28):

T ∗∗ − T ′

∆t
= (1 − ϕn

sc)Θ + ϕn
scTsc (32)

where Θ is the right-hand side of Eq. (28) and the
subscript sc represents the isothermal solid object.

Pressure changes of the fluid 1 and 2 in the dif-
fusion stage are given as follows [8]:

p∗∗k − p∗k =
γk − 1
γk

ρ∗kCP,k

ρ∗kCP,kµJ,k + 1
(T ∗∗k − T ∗k ) (33)

where k = f 1, f 2. As mentioned above, p is defined
as the volume-averaged variable. Thus, the pressure
change in the diffusion stage is given by the assump-
tions that physical properties of the fluid 1 and 2 are
uniform and T ∗∗f 1 ≈ T ∗∗f 2 (= T ∗∗s ) as follows:

p∗∗ − p∗ ≈
γ f − 1
γ f

∑
k

ϕn
kρ
∗
k

CP, f (T ∗∗ − T ∗)

=
γ f − 1
γ f
ρ∗CP, f (T ∗∗ − T ∗) (34)

where k = f 1, f 2 and µJ,k = 0 in ideal gas.
In the acoustic stage, the variations of variables

due to pressure and external force are represented as

ρn+1 − ρ∗∗
∆t

= 0 (35)

(ρui)n+1 − (ρui)∗∗

∆t
= −∂pn+1

∂xi
+ ρ∗∗ fi (36)

(ρe)n+1 − (ρe)∗∗

∆t
= −pn+1 ∂u

n+1
i

∂xi
(37)



From Eqs. (35) ∼ (37) and (13), the pressure equation
in acoustic stage is derived as follows:

1
ρ∗∗a2

pn+1 − p∗∗

∆t
=

− ∂
∂xi

(
− 1
ρ∗∗
∂pn+1

∂xi
∆t + u∗∗i

)
+

1
γ f

∂u∗∗i
∂xi

(38)

where a∗∗ =
√

(γ f p∗∗)/ρ∗. In addition, un+1
i and

en+1 are calculated from Eqs. (36) and (37) with
obtained pn+1, respectively. As given by Eq. (38),
the pressure is calculated implicitly in our proposed
method. Thus, the proposed method enables us to
adopt a large time increment for compressible low
Mach number flows free from the CFL condition
based on the speed of sound [4].

3. RESULTS AND DISCUSSION
We conducted numerical experiments on heat

transfer around a rotating triangular solid in a square
cavity to discuss the applicability of the proposed
method. The proposed numerical model was im-
plemented within our in-house solver and computa-
tions were conducted on the supercomputer system
of Kyoto University (CRAY CS400 2820XT, Intel
Xeon Broadwell 18cores 2.1GHz x 2 / node) using
the domain decomposition method with the Message
Passing Interface (MPI).

Figure 3 shows computational area containing a
rotating triangular solid object. The lengths L and rt
are 5.0 × 10−2 m and L/3, respectively. The central
circular area (rh = 3L/40) of the triangular solid ob-
ject is heated at 400 K and all boundaries of the com-
putational area are cooled at 300 K. In this numerical
experiment, β∆T is about 0.33. This shows that the
variations of the gas density are non-negligible when
the gas flow and the heat transfer are fully developed
around the solid object. As shown in Figure 3, the tri-
angular solid object rotates in the clockwise direction

rt

x1
x2

Tc

Tc

T
c

T
c

g

rh

Th

L

L

Figure 3. Computational area containing rotating
triangular solid object [4]

Table 1. Physical properties of solid object

Case 1 Case 2
ρs [kg/m3] 1.17 7.87 × 103

λs [W/(m · K)] 2.50 × 10−2 80.3
CV,s [J/(kg · K)] 4.20 × 103 4.42 × 103

at the angular velocity ω. Herein, ω is given by

ω =
t
tb
π (0 ≤ t ≤ tb) (39)

ω = π (tb < t) (40)

where tb is 3.0 s in this study.
The fluid is an ideal gas and the specific heat ra-

tio γ f of the fluid is 1.40. As initial conditions, tem-
perature T0 of the fluid and the Prandtl number Pr are
300 K and 0.70, respectively. In this application, we
take two different values of physical properties of the
solid object as given in Table 1. In the case 1, phys-
ical properties of the solid object are those of the fluid
in the initial state. By contrast, we assume the solid
object to be iron (Fe) in the case 2 to confirm that
the proposed method enables to estimate the effect of
the physical properties on flow fields and temperature
distributions reasonably.

The number of computational cells is 150 × 150
for the case 1 and 2. In the proposed method, it is
necessary to set the fine computational cells for the
solid object to obtain reasonable results. Hence, we
conducted the several computations under the differ-
ent cell size conditions and compared predicted Nus-
selt numbers on the wall boundaries with each other.
As a result, it was confirmed that 150 × 150 cells are
sufficiently fine for this numerical experiment. In ad-
dition, the time increment ∆t is 1.50 × 10−4 s and
1.00 × 10−4 s for the case 1 and 2, respectively. Un-
der these conditions for ∆t, the obtained maximum
Courant numbers Ca,max based on the speed of sound
in the case 1 and 2 were 1.68 × 102 and 1.21 × 102.
Herein, Ca is given by

Ca = max
{
|u1| + a
∆x1

∆t,
|u2| + a
∆x2

∆t
}

(41)

Figures 4 and 5 show time histories of isotherms
(the isotherm interval is ∆T/10). Herein, t′ is the
non-dimensional time defined as t′ ≡ t/(2π/ωmax).
In this study, ωmax is π rad/s as given by Eqs. (39)
and (40). Initially, temperature is changed concent-
rically in the solid object as shown in Figures 4 (a)
and 5 (a). After that, the fluid around the solid ob-
ject is heated and the convective heat transfer occurs.
As shown in Figures 4 (d) and 5 (d), thermal bound-
ary layers around the solid object become thin in the
case 2 since λs in the case 2 is about 3,000 times
larger than that in the case 1 and larger temperature
differences occur between the solid surface and wall
boundaries of the computational area.
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Figure 4. Time history of isotherms predicted in case 1 (isotherm interval is ∆T/10)
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Figure 5. Time history of isotherms predicted in case 2 (isotherm interval is ∆T/10)



Figure 6. Time history of Nu predicted in case 1
and 2

Figure 6 shows the time history of the averaged
Nusselt number Nu on the square wall boundary.
Here, Nu is given by

Nu =
Nuw + Nue + Nus + Nun

4
(42)

where Nuw, Nue, Nus, and Nun are averaged Nusselt
numbers on the walls at x1 = 0, x1 = L, x2 = 0, and
x2 = L, respectively. For example, Nuw is given by

Nuw = −
∫ 1

0

∂θ

∂X1

∣∣∣∣∣
X1=0

dX2 (43)

where θ and Xi (i = 1, 2) are the non-dimensional
temperature and the non-dimensional coordinate
component defined as θ ≡ (T − Tc)/(Th − Tc) and
Xi ≡ xi/L. As shown in Figure 6, we can see periodic
oscillations of Nu due to counterclockwise convec-
tion rolls that occur around vertexes of the rotating
triangular solid object (Figure 4 (d) and 5 (d)). In ad-
dition, we obtained a reasonable result that Nu in the
case 2 is lager than that in the case 1 since the more
developed convective heat transfer occurs in the case
2. From the results obtained in this numerical exper-
iment, we concluded that the proposed method en-
ables to predict the heat transfer around the moving
solid object considering the differences of the phys-
ical properties between solid and fluid phases on the
orthogonal structured grid system.

Furthermore, we checked variations of the fluid
density in two cases. As a result of the computa-
tion, the value of ρ f ,min/ρ f ,0 was 0.901 and 0.826 in
the case 1 and 2, respectively. Herein, ρ f ,min is the
minimum fluid density in the computational cell that
contains only fluid, and ρ f ,0 is the fluid density in
the initial condition. These results show that vari-
ations of the fluid density are non-negligible and the
consideration of the fluid compressibility is required
to estimate high buoyancy flows occurred around the
rotating triangular solid object.

4. CONCLUSION
In this study, we applied the proposed computa-

tional method for non-isothermal compressible flows
around moving solid objects based on the mixture
model to the heat transfer around a rotating trian-
gular solid object in a square cavity. Since we use
phase-averaged governing equations for multiphase
fields and the computational method for compress-
ible low Mach number flows adopting the implicit
pressure calculation stage, the proposed method en-
ables to calculate non-isothermal compressible gas
flows around moving solid objects on the orthogonal
grid system free from the CFL condition based on the
speed of sound.

As a result of the computation, the reasonable
temperature distributions and averaged Nusselt num-
bers were predicted while considering the phys-
ical properties and movements of the solid object.
Furthermore, the maximum rate of the gas density
change was about 17% in the case 2. This result
indicates that variations of the gas density are non-
negligible and the consideration of the fluid com-
pressibility is required for this application. In our
future works, the proposed method will be applied to
the experimental results and its validity will be dis-
cussed.
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