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ABSTRACT

This paper deals with a computational
method to predict the interactions between
three-dimensional free-surface flows and elastic
bodies. The free-surface flow including solid ob-
jects is modeled as a multiphase flow field. The
governing equations for the field are solved on the
basis of a finite-volume method with collocated
grid system. A solid object, which is treated as
a linear elastic body, is represented with multi-
ple tetrahedron elements and their deformations
are solved with a finite-element method (FEM).
The fluid forces acting on the solid bodies are
evaluated from the volume integral of the cal-
culated momentum equations corresponding to
the solid area. Since the fluid-solid interactions
are taken into account, no additional constants,
such as the drag and lift coefficients, are needed
in the present method. As a result of the com-
parisons with experiments, it was shown that the
present computational method enables us to pre-
dict the interactions between wave-induced free-
surface flows and the deformations of elastic bod-
ies in the flows.

Keywords : fluid-solid interaction, free-
surface flow, elastic body, fluid force, mul-
tiphase model

NOMENCLATURE

C [N · sec/m] dumping matrix
L [1/sec] velocity gradient tensor
M [kg] mass matrix
T [Pa] Cauchy stress tensor
d [m] displacement vector
p [Pa] volume-averaged pressure
t [s] time
ui [m/s] mass-averaged velocity
xi [m] orthogonal coordinates

μ [m2/s] viscous coefficient
ρ [kg/m3] volume-averaged density

1. INTRODUCTION

The accurate evaluation of the interactions
between free-surface flows and deformable ob-
jects is an important engineering subject. In
the present study, a flexible object is represented
by multiple tetrahedron elements and its finite
deformation is calculated with FEM. This solid
model is implemented in a multiphase-flow model
in order to deal with the fluid-solid interaction.
In the multiphase-flow model, the free-surface
flow including solid objects, which consists of
gas, liquid and solid phases, is modeled as a mix-
ture of the immiscible and incompressible differ-
ent fluids. The fluid forces acting on the objects
are calculated from the computational results of
the momentum equation in the multiphase-flow
model. The predicted displacement velocities of
the objects are then used to determine the mass-
averaged velocities in the multiphase field.

The computational method was applied to
the experiments to confirm its applicability. As
a result, it was shown that the deformations of
elastic plates and the fluid forces due to the wave-
induced flows are reasonably predicted with the
present method.

2. NUMERICALPROCEDURES

2.1. Basic Equations
The multiphase field Ω consisting of gas, liq-

uid and solid phases is treated as a mixture of
fluids, which is the collection of the immiscible
and incompressible fluids Ωi, as shown in Figure
1. The fluid components Ωi in Fig.1 have differ-
ent densities and viscous coefficients equivalent
to the corresponding phases.

Assuming that the volume of Ω is sufficiently
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Figure 1. Mixture of immiscible and
incompressible fluids

small, a variable φ
′
k(t,x) in each fluid is approx-

imated as its spatially-representative value φk(t)
as follows: ∫

Ωk

φ
′
k(t,x) dΩ ≈ Ωkφk(t) (1)

where Ωk is the volume of the fluid-k. With
Eq.(1), the mass-conservation equation for Ω in
the Eulerian form can be written as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (2)

where ρ and ui are volume-average density and
mass-average velocity component:

ρ =
∑

k Ωkρk

Ω
, ui =

∑
k Ωkρkuk,i

Ωρ
(3)

Similarly, with the assumption that the differ-
ence between ui and uk,i, which is the velocity
component of the fluid-k, is negligible, the mass-
conservation equation in the Lagrangian form is
given by

∂ρ

∂t
+ uj

∂ρ

∂xj
= 0 (4)

From Eqs.(2) and (4), the following incompress-
ible condition is derived:

∂uj

∂xj
= 0 (5)

With the similar procedures, the momentum
equation is derived as follows:

∂ui

∂t
+

∂

∂xj
(uiuj) = fi

− 1
ρ

∂p

∂xi
+

1
ρ

∂

∂xj

[
∂

∂xj
(μui) +

∂

∂xi
(μuj)

]
(6)

where fi is the acceleration component of the
body force, while p and μ are volume-average
pressure and viscous coefficient defined as

p =
∑

k Ωkpk

Ω
, μ =

∑
k Ωkμk

Ω
(7)

2.2. Computational Method
The discretised governing equations of the

fluid-mixture are solved after determining the
volume-average physical properties with the sub-
cell method, which will be described later. The
velocity components ui and the pressure variable
p of the discretised governing equations are de-
fined on the collocated grid points in the compu-
tational fluid-cell.

The numerical procedures of the incom-
pressible fluid-mixture consist of three stages;
prediction, pressure-computation and correction
stages. At the prediction stage, the tentative ve-
locity components u∗i are calculated at the cen-
ter of the fluid-cells with a finite-volume method.
In this procedure, Eq.(6) is discretised with the
C-ISMAC method [1], which is based on the
implicit SMAC method [2]. The equation dis-
cretised with respect to time by the C-ISMAC
method is given by

u∗i − un
i

Δt
= fi − 1

ρ

∂pn

∂xi

− α
∂

∂xj
(u∗i u

n
j )− (1− α)

∂

∂xj
(un

i u
n
j )

+
β

ρ

∂

∂xj

[
∂

∂xj
(μu∗i ) +

∂

∂xi
(μu∗j )

]

+
1− β

ρ

∂

∂xj

[
∂

∂xj
(μun

i ) +
∂

∂xi
(μun

j )
]

(8)

where α and β are parameters whose ranges are
0 ≤ α, β ≤ 1. With the following relationship,

u∗i = un
i + ũi (9)

Eq.(8) is transformed to the following equation:

ũi

Δt
+ α

∂

∂xj
(ũiu

n
j )− β

ρ

∂

∂xj

[
∂

∂xj
(μũi) +

∂

∂xi
(μũj)

]

= fi − 1
ρ

∂pn

∂xi
− ∂

∂xj
(un

i u
n
j )

+
1
ρ

∂

∂xj

[
∂

∂xj
(μun

i ) +
∂

∂xi
(μun

j )
]

(10)

where ũi becomes nearly zero when the flow field
is almost steady or the time-scale of the flow
field is sufficiently larger than the time incre-
ment Δt. Thus, we can apply a simple first-
order spatial discretisation method to the left-
hand side of Eq.(10), while a higher-order scheme
to the right-hand side. The convection terms are
evaluated with a fifth-order conservation FVM-
QSI scheme [3] and numerical oscillations are
removed by a flux-control method [3]. The C-
ISMAC method enables us to derive easily the
simultaneous equation system from the implicit
form of the left-hand side of Eq.(10) as well as
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to preserve numerical accuracy by applying a
higher-order scheme to the explicit form on the
right-hand side of the same equation.

After solving the equation system of ũi,
which is derived from the discretised equation of
Eq.(10), u∗i is determined with Eq.(9). The u∗i
located at the center of the fluid-cell is then spa-
tially interpolated on the cell boundary. Before
this interpolation, pressure-gradient term evalu-
ated at the cell center is removed from u∗i in order
to prevent pressure oscillation as

ûi = u∗i +
1
ρ

∂pn

∂xi
Δt (11)

The cell-center velocity ûi, which is evaluated
without the pressure-gradient term, is spatially
interpolated on the cell boundaries by a suitable
function fb. After this procedure, the pressure-
gradient terms that are estimated on the cell
boundaries are added to the interpolated veloc-
ity, fb(ûi). Thus, we obtain the cell-boundary
velocity component ub,i as follows:

ub,i = fb(ûi)− 1
ρ

∂pn

∂xi

∣∣∣∣
b

Δt (12)

The velocity component un+1
b,i at n+ 1 time-step

is defined by

un+1
b,i = fb(ûi)− 1

ρ

∂pn+1

∂xi

∣∣∣∣
b

Δt (13)

Subtracting Eq.(12) from Eq.(13), we have

un+1
b,i = ub,i − 1

ρ

∂φ

∂xi
Δt (14)

where φ = pn+1 − pn. Substitution of Eq.(14)
into Eq.(5) yields the following equation of φ :

∂

∂xi

(
1
ρ

∂φk

∂xi

)
=

1
Δt

∂ub,i

∂xi
≡ D

Δt
(15)

At the pressure-computation stage, Eq.(15)
is solved with the C-HSMAC method. The
C-HSMAC method enables us to obtain the
pressure and cell-boundary velocity components,
which satisfy the incompressible condition |D| <
εD in each computational cell, where εD is a
given threshold. While the final results of the
C-HSMAC method are similar to those of the
SOLA method [4], it has been proved that
the computational efficiency of the C-HSMAC
method is largely improved [5]. The relation-
ships in the C-HSMAC method are given by

∂

∂xi

(
1
ρ

∂φ

∂xi

)
=
Dk

Δt
(16)

pk+1 = pk + φ (17)

uk+1
b,i = uk

b,i −
Δt
ρ

∂φ

∂xi
(18)

where the superscript k stands for the iteration
step-number of the C-HSMAC method.

The discretisation of Eq.(16) yields simulta-
neous linear equation system of φ, which is solved
with the BiCGSTAB method [6]. The iterative
computation using the above three equations is
completed when |D| < εD is satisfied in all fluid-
cells.

2.3. Solid Model
The solid object is represented with the mul-

tiple tetrahedron elements. Each element has ten
computational nodes used in FEM. The shape
function Ni (i = 1, · · · , 10) in an element is
given by a quadratic function of the natural co-
ordinates in the corresponding isoparametric el-
ement. When the displacement vector d on the
node is approximated with Ni, the following re-
lationship can be derived:

M d̈ + Cḋ + F int = f (19)

where f and F int are the external and internal
force vectors acting on the node, while M and C
are mass and damping matrices, which are given
by diagonal forms.

A solid object treated in this study is as-
sumed to be a linear elastic body. Thus, the
stress-strain behavior of the material is given by
a linear constitutive relation, while the finite de-
formation, which is related to the geometric non-
linearity [7], is taken into account. In order to
deal with the large deformation, the following ob-
jective stress rate, Cotter-Rivlin stress rate ten-
sor Ṫc, is utilized [8]:

Ṫc = Ṫ + LTT + TL (20)

where T and L are Cauchy stress and velocity
gradient tensors, respectively. The Ṫc is eval-
uated with the following time derivative of the
linear constitutive relation:

{Ṫc}v = Dε̇ = DBḋ (21)

where { }v means the vector form of the ten-
sor, while ε, D and B are the strain vector on
nodes, stress-strain and strain-displacement ma-
trices respectively. The stress tensor at n + 1
time step given by T n+1 is approximated with
the Euler explicit discretisation:

{T n+1}v = {T n}v + {Ṫ}vΔt (22)
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where Ṫ is obtained from Eq.(20). Then, F n+1
int

in Eq.(19) is calculated with the following volume
integral:

F n+1
int =

∫
Ω

BT {T n+1}vdΩ (23)

Finally, the acceleration vector d̈ is calcu-
lated from Eq.(19) with the following equation:

d̈ = M−1
[
f − Cḋ− F int

]
(24)

The node velocity vector ḋ and displacement vec-
tor d can be obtained by the numerical time in-
tegration of Eq.(24).

2.4. Interactions between Fluids and Objects
As shown in the governing equations, the

physical values of the mixture of fluids need to be
determined for each fluid cell. Since the fluid cell
is based on the Eulerian grid fixed in the space,
the volume-average physical value ψ in the cell
C is estimated with the following equation:

ψ = (1− f)ψg +

(
f −

∑
Ok∈C

αk

)
ψl

+
∑

Ok∈C

αkψbk (25)

where ψg, ψl and ψbk are physical values in gas,
liquid phases and the object-k, Ok in Eq.(25),
respectively. The volume fraction of liquid and
solid phases in a fluid-cell is given by f in
Eq.(25), while the fraction of the solid part is
defined by αk. The fraction αk is approximated
with a sub-cell method, as illustrated in Figure
2. When an element is included in the multi-
ple fluid-cells as shown in Fig.2, each fluid-cell is
divided into multiple sub-cells and αk is deter-
mined from the number of sub-cells included in
the element.

Figure 2. Sub-cell method (thick and
thin grid lines stand for fluid-cell and
sub-cell boundaries)

The fluid forces acting on the objects are cal-
culated with the pressure and viscous terms in
the computational results of Eq.(6). The fluid
force vector F Ckm acting on a part of the ele-
ment Tkm of the object-k included in a fluid-cell
C is evaluated as the following procedures. The
xi component of F Ckm, which is given by F i

Ckm,
is calculated with a portion of the element vol-
ume ΔTCkm included in the fluid-cell C and the
density ρbk of the object-k as

F i
Ckm = ρbkΔTCkm

[
−1
ρ

∂p

∂xi

+
1
ρ

∂

∂xj

{
∂

∂xj
(μui) +

∂

∂xi
(μuj)

}]
(26)

where ΔTCkm is evaluated with the sub-cell
method.

To calculate the deformation of the solid ob-
jects, the fluid force calculated with Eq.(26) is
distributed to ten nodes in an element and it is
used as the external force f in Eq.(24). On the
other hand, the calculated displacement veloc-
ity vector ḋ on the node is taken into account
in the multiphase field. The velocity vector vkm

of the element Tkm is determined as the aver-
age value of those defined at the nodes ḋ. The
contribution of the element Tkm to the fluid-cell
C is then determined with vkm, density and vol-
ume ΔTCkm. Finally, the velocity vector u in the
multiphase field, is determined as the following
mass-averaged value:

u =
1
mC

(
mfuf +

∑
k

∑
m

ρbkΔTCkmvkm

)

(27)

where mC and mf are total mass in the fluid-cell
and the mass of gas and liquid phases, respec-
tively. The velocity vector of the mixture of gas
and liquid phases is given by uf .

3. APPLICABILITY OF PREDICTION
METHOD

The computational method was applied to
the experimental results to confirm its applica-
bility. As shown in Figure 3, the deformation of
an elastic plate was measured in a water tank
equipped with a wave generator. The deforma-
tion of the plate is caused by the wave-induced
flow generated on a box in the water tank shown
in Fig.3. The top of the elastic plate is fixed
on a steel plate, on which four strain gages are
attached to measure the fluid forces acting on
the elastic plate. The lengths of the tank L1,
L2 and B shown in Fig.3 are 0.7 m, 0.7 m and
0.19 m, while the initial water depth h0 and the
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height of the box hb are 0.15 m and 0.1 m, respec-
tively. The bottom surface of the elastic plate is
placed 15mm above the top of the box. The spe-
cific gravity, the Young’s modulus and dumping
coefficient per unit volume of the elastic plate
are about 0.255, 3.5 × 105 Pa and 2.0 × 103 N
s/m/m3, respectively.

In the experiments, the maximum water
depth hm in front of the box was 195 mm. The
deformations of the elastic plate were recorded
by a video camera and the displacements were
evaluated with the image analysis. In addition,
the fluid forces were measured by the strain gages
on the supporting steel plate.

plate

box
h 0

wave
generator

L 1 L 2

h b

box
plateB

z

x

y

x

Figure 3. Water tank used in experiments
(side and plane views)

In the computations, a fluid-cell is a 10 ×
10 × 10 mm cube and 140 × 19 × 25 cells were
set for the regions inside of the tank, including
water, air and the elastic plate. The kinematic
viscosities of water and air are set at 1.0× 10−6

and 1.0 × 10−5 m2/s, while their densities are
1.0×103 and 1.0 kg/m3 respectively. The elastic
plate is represented by 164 tetrahedron elements
with 441 nodes.

Figure 4 shows the time histories of the
displacements dt at the bottom of the elastic
plate. Since the predicted results generally agree
with the experimentally-observed displacements
in both cases, it can be thought that the present
solid model for finite deformation is effective.

The comparison between experiments and
predictions regarding the fluid forces Fw acting
on the plate is shown in Figure 5. While the
calculated fluid forces are slightly smaller than

those obtained in experiments, the shapes of the
distributions are reasonably predicted.

The pressure distributions around the de-
formed plate are shown in Figure 6. It can
be seen that the high pressure regions exist on
the upstream (−x direction) side of the wave-
induced flow, while on the downstream side low
pressure zone arises due to the wake vortex flows.
It can be concluded that the adequate evaluation
of the surrounding pressure field enables us to ob-
tain the reasonably-predicted results as shown in
Figs.4 and 5.

Figure 4. Time history of displacement

Figure 5. Time history of fluid force
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(a) side view

(b) top view

Figure 6. Predicted pressure
distributions around deformed plate

CONCLUSIONS

A computational method was proposed on
the basis of the multiphase modeling to predict
the interactions between free-surface flows and
the linear elastic objects which undergo finite
deformations. In the multiphase modeling, the
gas, liquid and solid phases are treated as im-
miscible and incompressible fluids and the gov-
erning equations are derived. The solid model,
on the other hand, is derived with the objec-
tive stress rates to deal with the finite defor-
mations. The proposed computational method
was applied to the experimental results: defor-
mations of an elastic plate due to wave-induced
flows. As a result, it was shown that the plate
displacements and fluid forces are successfully
predicted with the present method.
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